
NLP Module: Text Processing

Natural Language Processing
● Analyzes language and extracts meaning

What is NLP?

Multiple Uses :

● Sentiment analysis
● Text Classification
● Natural language generation
● Automatic Captioning
● Machine Translation
● And More!

Text Processing

NLP Process

Feature Engineering &
Text Representation
Learn how to extract information
from text

Learning Models

Use learning models to
identify parts of speech,
entities, sentiment, and
other aspects of the text.

Clean up the text to make it
easier to use and more
consistent to increase
prediction accuracy later on

Cleaning Text Using
Built in Str Methods

Datapoints have different syntax, need to have the same format
to increase accuracy of nlp

Need to look through data first to see what to clean

Importance of Cleaning

Some Differences to Check For:

● Capitalization: qui vs Qui
● Different punctuation conventions: St. vs St
● Omission of words: County/Parish is absent in the population table
● Use of whitespace: DeWitt vs De Witt
● Different abbreviation conventions: & vs and

Methods Useful for Cleaning

Cleaning Text Using
Regular Expressions
(Regex)

Allows us to create general patterns for strings

Intro to Regex

Literals:

● A literal character in a regular expression matches the character itself. For example, the regex r"a" will
match any "a" in the string.

Characters with Special Meaning:

● Period character ‘.’ : matches any character that contains the character after the period
○ show_regex_match("Call me at 382-384-3840.", r".all")

○ Call me at 382-384-3840.

● Backslash character ‘\’: signals to interpret the next character literally
○ show_regex_match("Call me at 382-384-3840.", r"\.")

○ Call me at 382-384-3840.

● Period character ‘.’: match parts of pattern that may vary
○ show_regex_match("Call me at 382-384-3840.", "...-...-....")

○ Call me at 382-384-3840.

Intro to Regex Cont.

Negating Characters:

● A negated character class matches any character except the characters in the class. To create a negated
character class, wrap the negated characters in [^]

Square Brackets:

● [x]: Square brackets match something that you kind of don’t know about a string you’re looking for
○ [DB]an - matches ‘Dan’ & ‘Ban’

● [x-x]: You specify a range by writing the first character, followed by a dash, and ending with the last
character

○ [A-Z]an - matches ‘Aan’, ‘Ban’, ‘Can’, ‘Dan’, ... ‘Zan’

○ [0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9] - matches 3 digits, a dash, 3 more

digits, a dash, and 4 more digits (phone number)

Regex Methods Useful for Text Processing
re.search
re.search(pattern, string) searches for a match of the regex pattern anywhere in string. It returns a
truthy match object if the pattern is found; it returns None if not.

re.findalll
re.findall(pattern, string) extracts substrings that match a regex. This method returns a list of all matches
of pattern in string.

re.sub
re.sub(pattern, replacement, string) replaces all occurrences of pattern with replacement in the
provided string. This method behaves like the Python string method str.sub but uses a regex to match patterns.

re.split
re.split(pattern, string) splits the input string each time the regex pattern appears. This method
behaves like the Python string method str.split but uses a regex to make the split.

Stemming &
Lemmatization

"Stemming is the process of reducing inflection in words to their
root forms such as mapping a group of words to the same stem
even if the stem itself is not a valid word in the Language."

What is Stemming?

Nltk.stem has different types of stemmers that all vary slightly in how they stem and
the rules that they follow:

1. Import a stemmer “from nltk.stem import PorterStemmer”

2. Iterate through data and iterate through each word in the datapoint and
take each word and stem it using porter.stem(word) and then rejoin words
**this is because the stemmer works only on a per word bases and will just
return the original sentence if you pass sentence into porter.stem()

Stemming in Python

Lemmatization, unlike Stemming, reduces the inflected words
properly ensuring that the root word belongs to the language. In
Lemmatization root word is called Lemma. A lemma (plural
lemmas or lemmata) is the canonical form, dictionary form, or
citation form of a set of words.

-For example, runs, running, ran are all forms of the word run, therefore run is the lemma

of all these words. Because lemmatization returns an actual word of the language, it is
used where it is necessary to get valid words.

What is Lemmatization?

1. Import a lemmatizer “from nltk.stem import WordNetLemmatizer”

2. Iterate through data and iterate through each word in the datapoint and
take each word and stem it using wordnet_lemmatizer.lemmatize(“word”)
and then rejoin words **this is bc the stemmer works only on a per word
bases and will just return the original sentence if you pass sentence into
porter.stem()

Lemmatizing in Python

Tokenization &
Removing Stopwords

Importance of Removing Stopwords:
- Stopwords are words like “a” “the” “you” which don’t add much external

meaning to sentences especially when classifying

What is Tokenization?:

- Breaking up words in a sentence to individual words

Removing Stopwords from a Sentence
from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

example_sent = "This is a sample sentence, showing off the stop words filtration."

stop_words = set(stopwords.words('english'))

word_tokens = word_tokenize(example_sent)

filtered_sentence = [w for w in word_tokens if not w in stop_words]

 filtered_sentence = []

 for w in word_tokens:

 if w not in stop_words:

 filtered_sentence.append(w)

