Classification with Logistic Regression

Chad Wakamiya
Spring 2020
Agenda

Classification
Introduction to types of classification and set up.

Logistic Regression
The logistic regression formula and intuition.

Multiclass Classification
Extending logistic regression for datasets with multiple features.
Classification
Classification

Classification is the problem of assigning observations to one or more categories.

Binary Classification
Involves *only 2 classes*

Multiclass Classification
Involves *more than 2 classes*

Examples

Binary
- Spam detection
- Churn/no churn customer retention
- Develop Diabetes/don’t
- Default/repay loan

Multiclass
- Image recognition
- Natural language processing

Images from https://www.coursera.org/learn/machine-learning
Classification

We have **features** and **labels** data \((X, Y)\):

\[
(x_1, y_1) \\
(x_2, y_2) \\
\vdots \\
(x_n, y_n)
\]

- **Features**: \(x_i\) is a vector (or even matrix) for each data element
 - For a picture: \(x_i = [32 \times 32 \times 3]\): array of numbers
- **Actual Labels**: \(y_i \in \{0, 1\}\)
 - If picture \(i\) is a dog, \(y_i = 1\)
 - If picture \(i\) is a cat, \(y_i = 0\)

\[\hat{y}_i \in \{0, 1\}\]

Classification Model

- **Parameters**: \(W\) is the model weights
 - Coefficients in a regression model

Sometimes -1 vs 1 instead of 0 vs 1
Logistic Regression
Logistic Function

The logistic function $\sigma(t)$ can be used to classify binary observations.

- When t is large, $\sigma(t) \rightarrow 1$
- When t is small, $\sigma(t) \rightarrow 0$

$$\sigma(t) = \frac{1}{1+e^{-t}}$$

[Graph of the logistic function]

https://en.wikipedia.org/wiki/Sigmoid_function
1. Plot of a binary data set
Logistic Regression vs. Linear Regression

1. Plot of a binary data set
2. Fit a linear regression model. (Not a good estimator!)
1. Plot of a binary data set

2. Fit a **linear regression** model. (Not a good estimator!)

3. Fit a **logistic regression** model (Desired binary behavior!)
Logistic Regression

- Notice that $0 < \sigma(t) < 1$ for all real numbers t, so we can use the logistic function to model the probability that an observation belongs to a certain class.
- If $t = w_0 + w_1 x$ we can use the logistic function to write:

$$P(Y = 1 | x) = \sigma(t) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Probability the image is a dog given features x

Example:

$P(Y = 1 | x) = \frac{1}{2}$ when $w_0 + w_1 x = 0$
Logistic Regression Threshold

We can select some threshold ($\text{Prob} = 0.5$)

- If $P(Y=1|x) > 0.5 \Rightarrow$ Predict Dog ($\hat{Y} = 1$)
- If $P(Y=1|x) < 0.5 \Rightarrow$ Predict Cat ($\hat{Y} = 0$)

$$P(Y = 1|x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$
1. **Problem:** Will student i pass given i studies x_i hours?

 \[\hat{y}_i = \begin{cases}
 1, & \text{if pass} \\
 0, & \text{if fail}
 \end{cases} \]

2. **Model:** We use this curve to predict the probability that the student would pass given x hours of study.

3. **Classify:** If Prob > 0.5, we predict the student will pass the exam.

Data:
- $x =$ hours studied:
- $y =$ pass/not pass:

<table>
<thead>
<tr>
<th>Hours</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Prob. of passing vs. hours studying

If study time > 2.75 hrs, we predict the student will pass.
Multi-feature Logistic Regression

The logistic function can be extended for multiple features \((d\) dimensions) if we write:

\[
t = x_i^T W = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \ldots + w_d x_{i,d}
\]

\((\text{in matrix form})\)

\[
P(Y = 1 | x_i) = \sigma(x_i^T W) = \frac{1}{1 + e^{-(w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \ldots + w_d x_{i,d})}}
\]

Probability the image is a dog given features \(x_i\).
Training a Logistic Regression Classifier (Find W)
Steps to Train a Classifier Model

1. Choose our **model** to estimate y_i

 $$f_W(x_i) = \hat{y}_i = \begin{cases} 1, & \text{if Prob > threshold} \\ 0, & \text{otherwise} \end{cases}$$

2. Define a **loss function** (L)

 → Allows for scoring each sample point (picture) x_i

3. Optimize across the parameter space (W) to minimize the **loss function** to some small threshold

Goal: Find the best values for the **model parameters** W.

Berkeley SCET
1. Choose a Model (Review)

We select a logistic regression model and set the threshold to 0.5:

\[f_W(x_i) = \hat{y}_i = \begin{cases} 1, & \text{if } p_i > 0.5 \\ 0, & \text{otherwise} \end{cases} \]

where:

\[p_i = P(Y = 1|x_i) = \sigma(x_i^T W) \]

Next: Find the parameters \(W = [w_0, w_1, w_2, \ldots w_d] \)
2. Define a Loss Function

Logistic regression commonly uses the **Cross Entropy** loss function to score predictions:

\[L_i = -y_i \ln(p_i) - (1 - y_i) \ln(1 - p_i) \]

- If the predicted label is **wrong** the **loss is large** and if the predicted label is **right** the **loss is small**.
- Since \(y_i \) is binary there are 2 cases:

I. \(y_i = 0 \) \(\Rightarrow \) \(L_i = -\ln(1-p_i) \)
 - If \(\hat{y_i} = 0 \) \(\Rightarrow \) \(p_i \) is near 0 \(\Rightarrow \) **Loss is -0**
 - If \(\hat{y_i} = 1 \) \(\Rightarrow \) \(p_i \) is near 1 \(\Rightarrow \) **Loss is large**

II. \(y_i = 1 \) \(\Rightarrow \) \(L_i = -\ln(p_i) \)
 - If \(\hat{y_i} = 0 \) \(\Rightarrow \) \(p_i \) is near 0 \(\Rightarrow \) **Loss is large**
 - If \(\hat{y_i} = 1 \) \(\Rightarrow \) \(p_i \) is near 1 \(\Rightarrow \) **Loss is -0**

\[p_i = P(Y = 1|x_i) = \sigma(x_i^T W) \]
3. Optimize Across the Parameter Space

- We want the W with the **lowest average loss** across all data points in our training or test set.

 \[
 \text{Average Loss} = \frac{1}{n} \sum_{i=1}^{n} L_i
 \]

- Formally this can be written as:

 \[
 W^* = \arg \min_W \frac{1}{n} \sum_{i=1}^{n} -y_i \ln(\sigma(x_i^T W)) - (1 - y_i) \ln(1 - \sigma(x_i^T W))
 \]

 \[
 \text{Average Loss}
 \]

- With regularization, the average loss function is convex \Rightarrow **solve for W^***
Logistic Regression Classifier Summary

1. Choose our **model** to estimate \(y_i \)

\[
f_W(x_i) = \begin{cases}
1, & \text{if } p_i > 0.5 \\
0, & \text{otherwise}
\end{cases}
\]

\(p_i = \sigma(x_i^T W) \)

2. Define a **loss function** \((L)\)

 \(L_i = -y_i \ln(p_i) - (1 - y_i) \ln(1 - p_i) \)

3. Optimize across the parameter space \((W)\) to **minimize the loss function** to some small threshold

\[
W^* = \arg \min_W \frac{1}{n} \sum_{i=1}^{n} -y_i \ln(\sigma(x_i^T W)) - (1 - y_i) \ln(1 - \sigma(x_i^T W))
\]
Multiclass Classification
Multiclass Classification

Logistic regression can be applied to solve multiclass problems.

Common Approaches

1. One-vs-Rest (One-vs-All)
2. Softmax Regression (Multinomial Logistic Regression)
One-vs-Rest (One-vs-All)

For each class, build a logistic regression to find the probability the observation belongs to that class. For each data point, predict the class with the highest probability.

\[
P(Y = 0 | x) \\
P(Y = 1 | x) \\
P(Y = 2 | x)
\]

Predict the class with the highest probability
Softmax Regression (Multinomial Logistic Regression)

In softmax regression the probability that a data point belongs to each class is calculated by:

\[
\begin{bmatrix}
P(Y = 1|x; \theta) \\
P(Y = 2|x; \theta) \\
\vdots \\
P(Y = K|x; \theta)
\end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top} x)}
\begin{bmatrix}
\exp(\theta^{(1)\top} x) \\
\exp(\theta^{(2)\top} x) \\
\vdots \\
\exp(\theta^{(K)\top} x)
\end{bmatrix}
\]

Separate \(\theta^{(i)} \in \mathbb{R}^d \) for each class

Normalize probabilities so they sum to 1.

Predict the class with the highest probability

If \(K = 2 \), softmax regression reduces to the same binary logistic regression formulas we saw earlier. Check out this [overview of softmax regression](#) for the proof.
References

- **DataX (IEOR 135/290)** - Ikhlac Sidhu and Arash Nourian
 - The content presented in this lecture draws on materials by the IEOR 135 course instructors.

- **Logistic Regression**
 - https://en.wikipedia.org/wiki/Logistic_regression

- **Data Science Principles and Techniques (DS 100 at UC Berkeley)** - Ani Adhikari, Joseph E. Gonzalez
 - http://www.ds100.org/sp20/syllabus/

- **Softmax Regression**

- **One-vs-all**
Images for Notebook
Splitting the Dataset

- Training Set
- Validation Set
- Test Set
Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted Positive (1)</th>
<th>Predicted Negative (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actually Positive (1)</td>
<td>True Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>Actually Negative (0)</td>
<td>False Positive</td>
<td>True Negative</td>
</tr>
</tbody>
</table>