
NLP Module: Feature Engineering & 
Text Representation



Text Processing

NLP Process

Feature Engineering & 
Text Representation
Learn how to extract information 
from text and represent it 
numerically

Learning Models

Use learning models to 
identify parts of speech, 
entities, sentiment, and 
other aspects of the text.

Clean up the text to make it 
easier to use and more 
consistent to increase 
prediction accuracy later on



One-Hot-Encoding 

Feature Engineering & Text Representation

Bag of Words Model 
Using Countvectorizer

Generalization of 
one-hot-encoding for a string 
of text 

N-Gram Encoding 

Captures word order in a 
vector model

Transforms categorical 
feature into many binary 
features

TFIDF

Converts a collection of 
raw documents to a 
matrix of TFIDF features



What is Feature 
Engineering & What is 
Text Representation?



Feature engineering is the process of transforming the raw 
data to improve the accuracy of models by creating new 

features from existing data



Text Representation is numerically representing text to 
make it mathematically computable  



One Hot Encoding



Encodes categorical data as real numbers such that the magnitude of each 
dimension is meaningful

For each distinct possible value, a new feature is created 

Exp:

One Hot Encoding



from sklearn.preprocessing import OneHotEncoder

oh_enc = OneHotEncoder()

oh_enc.fit(df[['name', 'kind']])

oh_enc.transform(df[['name', 'kind']]).todense()

One Hot Encoding in Scikit-Learn

One Hot Encoding in Pandas
pd.get_dummies(df[['name', 'kind']])



Bag of Words Model



Extracts features from text

Stop words not included, word order is lost, sparse encoding

Exp:

Bag of Words Model 



sample_text =  ['This is the first document.', 'This document is the second 
document.', ‘This is the third document.’ ]

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(stop_words="english")

vectorizer.fit(sample_text)

#to see what words were kept

print("Words:", list(enumerate(vectorizer.get_feature_names())))

Bag of Words Model using Scikit-Learn



N-gram Encoding



Extracts features from text while capturing local word order by defining 
counts over sliding windows 

Exp n =2 :

N-gram Encoding



sample_text =  ['This is the first document.', 'This document is the second 
document.', ‘This is the third document.’ ]

from sklearn.feature_extraction.text import CountVectorizer

bigram = CountVectorizer(ngram_range=(1, 2))

bigram.fit(sample_text)

#to see what words were kept

print("Words:", list(zip(range(0,len(bigram.get_feature_names())), 
bigram.get_feature_names())))

N-gram Encoding using Scikit-Learn



TFIDF Vectorizer



Converts a collection of raw documents to a matrix of TFIDF features

What are TFIDF Features? 

TFIDF stands for term frequency inverse document frequency and it represents 
text data by indicating the importance of the word relative to the other words in 
the text 

2 Parts:

TF: (# of times term t appears in a document)/ (total # of terms in the document)

IDF: (log10 (total # of documents)/(# of documents with term t in it)   

TFIDF Vectorizer 



TFIDF = TF*IDF

TF represents how frequently the word shows up in the document 

IDF represents how important the word is to the document (rare words)

TFIDF Vectorizer con.



from sklearn.feature_extraction.text import TfidfVectorizer

sample_text =  ['This is the first document.', 'This document is the second 
document.', ‘This is the third document.’ ]

vectorizer = TfidfVectorizer()

X = vectorizer.fit_transform(sample_text)

print(vectorizer.get_feature_names())

TFIDF Vectorizer Encoding using Scikit-Learn


