
Object Detection with YOLO

Chad Wakamiya
Spring 2020

Object Detection

Agenda

YOLO Algorithm

● YOLO algorithm steps
● Bounding boxes
● Measuring performance

(UoI)
● Non-max suppression

YOLO Implementations

Defining the object
detection problem and a
naive solution.

● Pretrained models
with the COCO
dataset.

● Custom trained
models

Object Detection

Object Detection is the problem of locating and classifying objects in an image.

Classification vs. Object Detection

Classification
● One object and label per image

Cat Car

Dog

Object Detection
● Multiple objects per image
● Determine objects' location

Dog Cat

Car

Bounding Box

Naive Approach

Classifier
Model (CNN)

Label
Dog?
Person?
Nothing?

2. Feed the images into a classifier model
to predict a label for that region.

● Slow ➝ Not good for real time uses
● Improved version: Region-based Convolutional

Neural Net (R-CNN)
○ Strategically selects interesting regions to run

through the classifier.

1. Scan the image with a sliding
window.

YOLO Algorithm

● Instead of making predictions on many regions of an image, YOLO passes the
entire image at once into a CNN (much faster!)

● The CNN that predicts the labels, bounding boxes, and confidence
probabilities for objects in the image.

YOLO "You Only Look Once"

Convolutional Neural Net

Output

Car: 0.93

Input Bounding
Box

Confidence
Probability

Label

YOLO Steps
3. Return bounding boxes

above confidence threshold.

A cell is responsible for detecting an
object if the object's bounding box
falls within the cell. (Notice that each
cell has 2 blue dots.)

2. Each cell predicts B
bounding boxes.

B = 2

1. Divide the image into cells
with an S x S grid.

Cell
S = 3

Car: 0.93

All other bounding boxes have a
confidence probability less than
the threshold (say 0.90) so they
are suppressed.

In practice, we we would use large values (S = 19 and B = 5) to identify more objects.

Let's use a simple example where there are 3x3 cells (S=3), each cell predicts 1 bounding box (B=1),
and objects are either dog = 1 or human = 2.

How are bounding boxes encoded?

pc

bx

by

bh

bw

c1

c2

Coordinates of the bounding box's
center

Width (height) of bounding box as
a percent of the cell's width or
(height)

Probability the bounding box contains
an object

(bx,
by)

bw

b
h

y =

*There's a probability for each class so if there are 80 classes we would have c1,…c80

Probability the cell contains an
object that belongs to class 1 (or 2)
given the bounding box contains
an object

1

bx

by

bh

bw

0

1

y =

Example:
For each cell, the CNN predicts a vector y:

What happens if we predict multiple bounding boxes per cell (B>1)? We simply augment y.

Encoding Multiple Bounding Boxes

pc
bx
by
bh
bw

Notice that y has 5B+C elements (C is the number of classes).

y = pc
bx
by
bh
bw
c1
c2

(bx, by)

bw

bh

bh

bw

(bx, by)

S

S

(5B+C)

The CNN will predict a y for each cell,
so the size of the output tensor
(multidimensional "matrix") should be:
S×S×(5B+C)

YOLO Overview

Convolutional Neural Net

S×S×(5B+C)
W×H×3

W: Width of image in pixels
L: Height of image in pixels
3: Number of color channels in RGB

Series of convolutional and
pooling layers.

Input

Car: 0.93

Output

A tensor that specifies the
bounding box locations and
class probabilities.

● Union over Intersection (UoI) measures the overlap between two bounding boxes.
● During training, we calculate the UoI between a predicted bounding box and and the

ground truth (the prelabeled bounding box we aim to match)

Measuring Performance with UoI

Union over
Intersection

Area of Intersection
=

Area of Union

Predicted Bounding Box

Ground Truth

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Poor Good Excellent

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

● Sometimes the same object will be detected multiple times
● Non-max suppression solves multiple counting by removing the box with the lower

confidence probability when the UoI between 2 boxes with the same label is above
some threshold.

Double Counting Objects (Non-Max Suppression)

Dog: 0.95

3. Suppress boxes with
UoI above a selected
threshold (usually 0.3)

UoI: 0.62

UoI: 0.47

2. Calculate the UoI between
the highest confidence box
each of the other boxes.

1. Identify the box with the
highest confidence.

Dog: 0.82
Dog: 0.41

Dog: 0.95

Implementing YOLO

● Images with bounding boxes prelabeled are often used to train object detection
models

● COCO (Common Objects in Context) - a popular computer vision database of images
with 80 labeled objects

Pretrained Models

YOLO Implementation
(CNN)

Pretrained Model
with COCO Pineapples and cantaloupes are not in

COCO so they are not recognized.

https://cocodataset.org/#home

COCO Pretrained Labels

person fire
hydrant

elephant skis wine glass broccoli diningtable toaster

bicycle stop sign bear snowboard cup carrot toilet sink

car parking
meter

zebra sports ball fork hot dog tvmonitor refrigerator

motorbike bench giraffe kite knife pizza laptop book

aeroplane bird backpack baseball bat spoon donut mouse clock

bus cat umbrella baseball glove bowl cake remote vase

train dog handbag skateboard banana chair keyboard scissors

truck horse tie surfboard apple sofa cell phone teddy bear

boat sheep suitcase tennis racket sandwich pottedplant microwave hair drier

traffic light cow frisbee bottle orange bed oven toothbrush

Example labels: person, car, motorbike, traffic light, dog, cat, sheep spoon, cup, sandwich, keyboard,
chair, toaster, toothbrush, sports ball...

Image from https://cocodataset.org/#home

https://cocodataset.org/#home

● If your use case only uses objects in COCO → you can use a pretrained model.
● Otherwise you will need to train your own YOLO model. This will require:

1.

Custom Models
Are the objects to detect in COCO?

Pretrained Model
1. Download model. Some pretrained YOLO

models:
○ ImageAI (easy-to-use, lightweight YOLO

implementation)
○ Darknet (trained by the author of YOLO)

Yes

Train a Custom Model
1. Finding images of the objects.
2. Label bounding boxes.
3. Train your YOLO model:

i. Implement your own model using OpenCV,
Tensorflow/Keras

ii. Use a library (such as ImageAI's custom
training methods)

No

https://imageai.readthedocs.io/en/latest/detection/index.html
https://pjreddie.com/darknet/yolo/
https://imageai.readthedocs.io/en/latest/

COCO Pretrained Labels
person fire

hydrant
elephant skis wine glass broccoli diningtable toaster

bicycle stop sign bear snowboard cup carrot toilet sink

car parking
meter

zebra sports ball fork hot dog tvmonitor refrigerator

motorbike bench giraffe kite knife pizza laptop book

aeroplane bird backpack baseball bat spoon donut mouse clock

bus cat umbrella baseball glove bowl cake remote vase

train dog handbag skateboard banana chair keyboard scissors

truck horse tie surfboard apple sofa cell phone teddy bear

boat sheep suitcase tennis racket sandwich pottedplant microwave hair drier

traffic light cow frisbee bottle orange bed oven toothbrush

Applications built with COCO trained models will
only be able to identify these objects!

● YOLO
○ ://towardsdatascience.com/you-only-look-once-yolo-implementing-yolo-in-less-than-30-lines-o

f-python-code-97fb9835bfd2
● R-CNN

○ https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms
-36d53571365e

● CNN
○ https://www.coursera.org/lecture/convolutional-neural-networks/optional-region-proposals-aCY

Zv
● YOLO

○ https://hackernoon.com/understanding-yolo-f5a74bbc7967
○ https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor

-python/
● Intersection Over Union

○ https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

References/Further Reading

https://towardsdatascience.com/you-only-look-once-yolo-implementing-yolo-in-less-than-30-lines-of-python-code-97fb9835bfd2
https://towardsdatascience.com/you-only-look-once-yolo-implementing-yolo-in-less-than-30-lines-of-python-code-97fb9835bfd2
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://www.coursera.org/lecture/convolutional-neural-networks/optional-region-proposals-aCYZv
https://www.coursera.org/lecture/convolutional-neural-networks/optional-region-proposals-aCYZv
https://hackernoon.com/understanding-yolo-f5a74bbc7967
https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/
https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor-python/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

