

Object Detection with YOLO

Chad Wakamiya Spring 2020

Agenda

Object Detection

Defining the object detection problem and a naive solution.

YOLO Algorithm

- YOLO algorithm steps
- Bounding boxes
- Measuring performance (UoI)
- Non-max suppression

YOLO Implementations

- Pretrained models with the COCO dataset.
- Custom trained
 models

Object Detection

Classification vs. Object Detection

Object Detection is the problem of locating and classifying objects in an image.

Classification

• One object and label per image

Berkeley SCET

Object Detection

- Multiple objects per image
- Determine objects' location

Naive Approach

1. Scan the image with a sliding window.

Berkeley SCET

2. Feed the images into a classifier model to predict a label for that region.

- Slow → Not good for real time uses
- Improved version: Region-based Convolutional Neural Net (**R-CNN**)
 - Strategically selects interesting regions to run through the classifier.

YOLO Algorithm

YOLO "You Only Look Once"

- Instead of making predictions on many regions of an image, YOLO passes the *entire* image at once into a CNN (much faster!)
- The CNN that predicts the labels, bounding boxes, and confidence probabilities for objects in the image.

YOLO Steps

1. Divide the image into cells with an $S \ge S$ grid.

Berkeley SCET

2. Each cell predicts *B* bounding boxes.

B=2

A cell is responsible for detecting an object if the object's bounding box falls within the cell. (Notice that each cell has 2 blue dots.)

3. Return bounding boxes above confidence threshold.

All other bounding boxes have a confidence probability less than the threshold (say 0.90) so they are suppressed.

In practice, we we would use large values (S = 19 and B = 5) to identify more objects.

How are bounding boxes encoded?

Let's use a simple example where there are 3x3 cells (S=3), each cell predicts 1 bounding box (B=1), and objects are either dog = 1 or human = 2.

*There's a probability for each class so if there are 80 classes we would have c_{1} ... c_{so}

Encoding Multiple Bounding Boxes

What happens if we predict multiple bounding boxes per cell (B>1)? We simply augment y.

The CNN will predict a *y* for each cell, so the size of the output tensor (multidimensional "matrix") should be: $S \times S \times (5B+C)$

Notice that *y* has 5B+C elements (*C* is the number of classes).

YOLO Overview

W: Width of image in pixelsL: Height of image in pixels3: Number of color channels in RGB

Berkeley SCET

Series of convolutional and pooling layers.

A tensor that specifies the bounding box locations and class probabilities.

Measuring Performance with Uol

- Union over Intersection (UoI) measures the overlap between two bounding boxes.
- During training, we calculate the Uol between a predicted bounding box and and the ground truth (the prelabeled bounding box we aim to match)

Predicted Bounding Box

Berkeley **SCET**

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Double Counting Objects (Non-Max Suppression)

- Sometimes the same object will be detected multiple times
- **Non-max suppression** solves multiple counting by removing the box with the lower confidence probability when the UoI between 2 boxes with the same label is above some threshold.

1. Identify the box with the highest confidence.

🖸 Uol: 0.47

- 2. Calculate the Uol between the highest confidence box each of the other boxes.
- 3. Suppress boxes with Uol above a selected threshold (usually 0.3)

Implementing YOLO

Pretrained Models

Berkeley SCET

- Images with bounding boxes prelabeled are often used to train object detection models
- <u>COCO (Common Objects in Context)</u> a popular computer vision database of images with 80 labeled objects

COCO Pretrained Labels

Example labels: person, car, motorbike, traffic light, dog, cat, sheep spoon, cup, sandwich, keyboard, chair, toaster, toothbrush, sports ball...

Image from https://cocodataset.org/#home

Custom Models

Are the objects to detect in COCO?

Pretrained Model

Yes

- 1. Download model. Some pretrained YOLO models:
 - <u>ImageAl</u> (easy-to-use, lightweight YOLO implementation)
 - Darknet (trained by the author of YOLO)

CET

Berkeley

Train a Custom Model

- 1. Finding images of the objects.
- 2. Label bounding boxes.

No

- 3. Train your YOLO model:
 - i. Implement your own model using OpenCV, Tensorflow/Keras
 - ii. Use a library (such as <u>ImageAI</u>'s custom training methods)

COCO Pretrained Labels

Applications built with COCO trained models will only be able to identify these objects!

person	fire hydrant	elephant	skis	wine glass	broccoli	diningtable	toaster
bicycle	stop sign	bear	snowboard	cup	carrot	toilet	sink
car	parking meter	zebra	sports ball	fork	hot dog	tvmonitor	refrigerator
motorbike	bench	giraffe	kite	knife	pizza	laptop	book
aeroplane	bird	backpack	baseball bat	spoon	donut	mouse	clock
bus	cat	umbrella	baseball glove	bowl	cake	remote	vase
train	dog	handbag	skateboard	banana	chair	keyboard	scissors
truck	horse	tie	surfboard	apple	sofa	cell phone	teddy bear
boat	sheep	suitcase	tennis racket	sandwich	pottedplant	microwave	hair drier
traffic light	COW	frisbee	bottle	orange	bed	oven	toothbrush

Berkeley SCET

References/Further Reading

- YOLO
 - <u>://towardsdatascience.com/you-only-look-once-yolo-implementing-yolo-in-less-than-30-lines-o</u>
 <u>f-python-code-97fb9835bfd2</u>
- R-CNN
 - <u>https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms</u>
 <u>-36d53571365e</u>
- CNN
 - <u>https://www.coursera.org/lecture/convolutional-neural-networks/optional-region-proposals-aCY</u> <u>Zv</u>
- YOLO
 - o <u>https://hackernoon.com/understanding-yolo-f5a74bbc7967</u>
 - <u>https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor</u> <u>-python/</u>
- Intersection Over Union
 - <u>https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/</u>

Berkeley SCET