

Berkeley SCET

Agenda

Object Detection

Defining the object detection problem and a naive solution.

YOLO Algorithm

- YOLO algorithm steps
- Bounding boxes
- Measuring performance (UoI)
- Non-max suppression

YOLO Implementations

- Pretrained models with the COCO dataset.
- Custom trained models

Classification vs. Object Detection

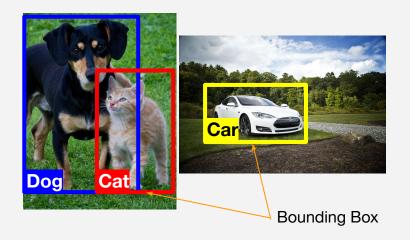
Object Detection is the problem of locating and classifying objects in an image.

Classification

- Each image has one object
- Model predicts one label

Object Detection

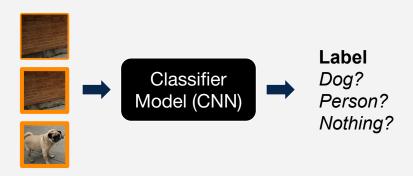
- Each image may contain multiple objects
- Model classifies objects and identifies their location.



Naive Approach

1. Scan the image with a sliding window.

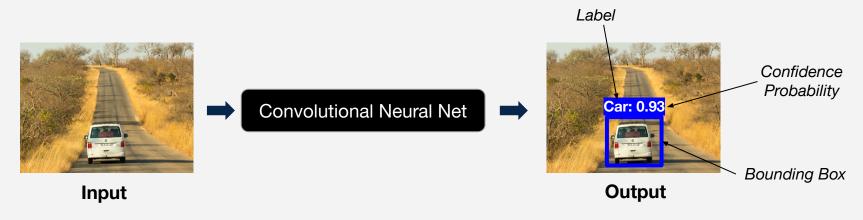
2. Feed the images into a classifier model to predict a label for that region.



- This approach is slow since it checks many windows that don't contain anything -> Not good for real time uses.
- The Region-based Convolutional Neural Net (R-CNN) is an improved version that strategically selects regions that are likely to contain an object to run through the CNN.

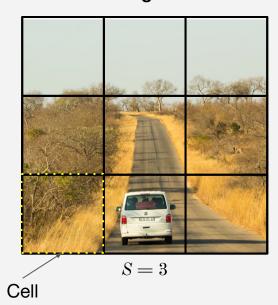
YOLO "You Only Look Once"

- Instead of making predictions on many regions of an image, YOLO passes the *entire* image at once into a CNN that predicts the **labels, bounding boxes, and confidence probabilities** for objects in the image.
- YOLO runs much **faster** than region based algorithms quick because requires only a single pass through a CNN.

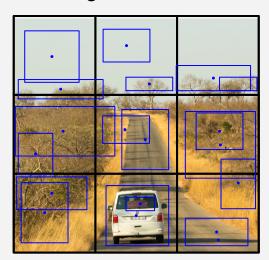


YOLO Steps

1. Divide the image into cells with an $S \times S$ grid.



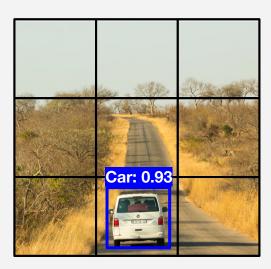
2. Each cell predicts *B* bounding boxes.



B=2

A cell is responsible for detecting an object if the object's bounding box falls within the cell. (Notice that each cell has 2 blue dots.)

3. Return bounding boxes above confidence threshold.

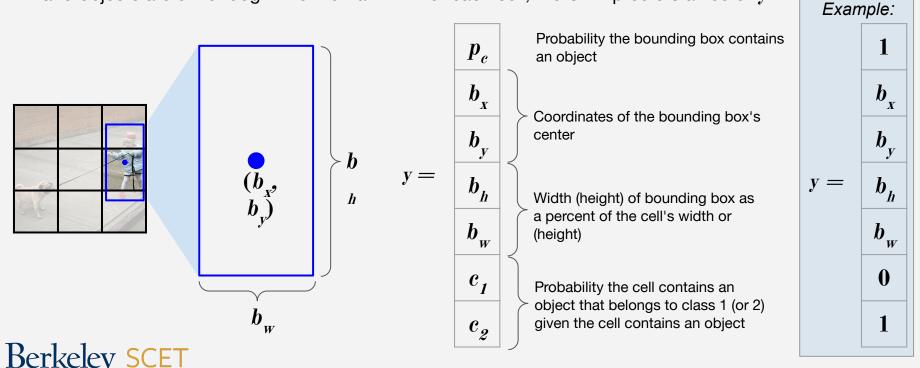


All other bounding boxes have a confidence probability less than the threshold (say 0.90) so they are suppressed.

How are bounding boxes encoded?

Let's use a simple example where there are 3x3 cells (S=3), each cell predicts 1 bounding box (B=1),

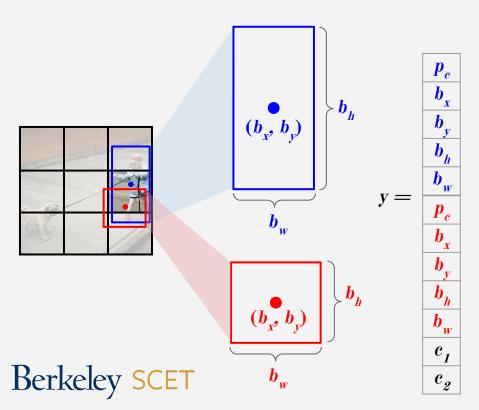
and objects are either dog = 1 or human = 2. For each cell, the CNN predicts a vector y:

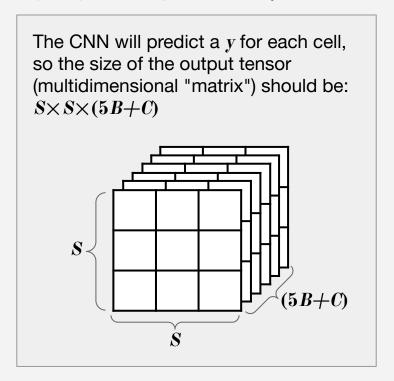


*There's a probability for each class so if there are 80 classes we would have $e_p...e_{s\theta}$

Encoding Multiple Bounding Boxes

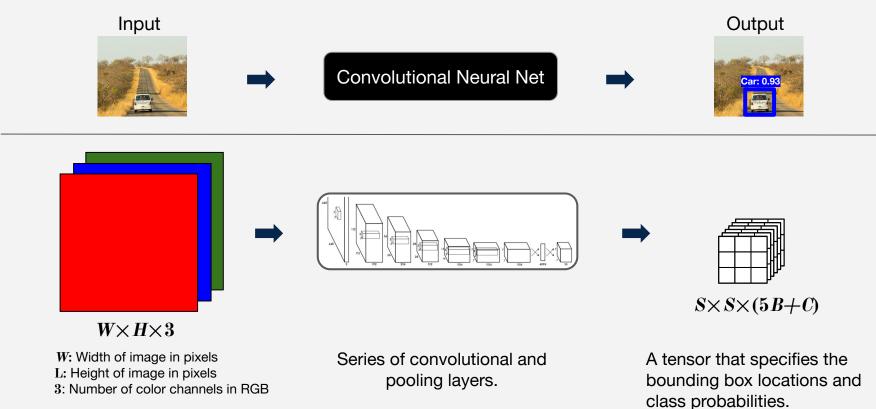
What happens if we predict multiple bounding boxes per cell (B>1)? We simply augment y.





Notice that y has 5B+C elements (C is the number of classes).

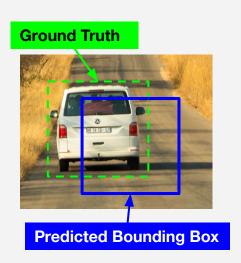
YOLO Overview

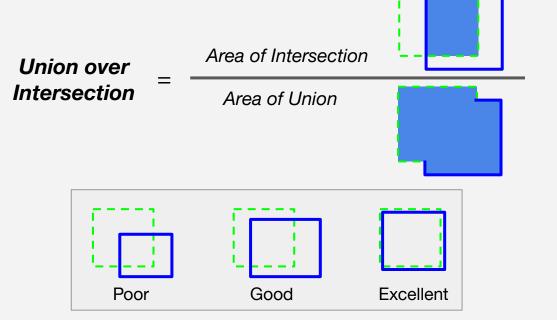


Measuring Performance with Uol

• Union over Intersection (UoI) measures the overlap between two bounding boxes.

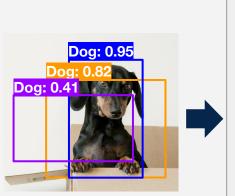
During training, we calculate the Uol between a predicted bounding box and and the ground truth
 (the prelabeled bounding box we aim to match)





Double Counting Objects (Non-Max Suppression)

- When predicting more than 2 bounding boxes per cell, sometimes the same object will be detected multiple times (overlapping boxes with the same label)
- Non-max suppression solves multiple counting by removing the box with the lower confidence
 probability when the Uol between 2 boxes with the same label is above some threshold.



Dog: 0.95 Dog: 0.82 Dog: 0.2

1. Identify the box with the highest confidence.

Non-Max Suppression

Uol: 0.62

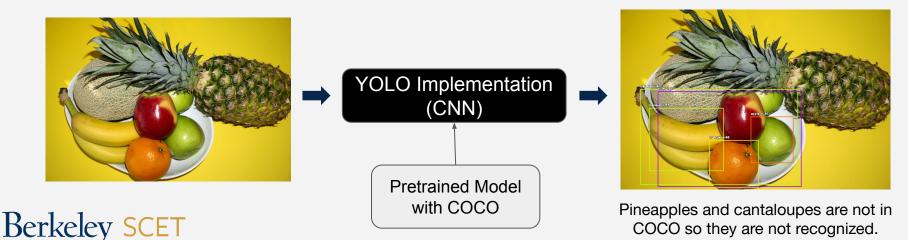
Uol: 0.47

2. Calculate the Uol between the highest confidence box each of the other boxes.

3. Suppress boxes with Uol above a selected threshold (usually 0.3)

Pretrained Models

- Training a YOLO model requires images labeled with bounding boxes. These datasets may take time to label, so readily available prelabeled images are often used to train models.
- A common dataset for image classification/detection/segmentation is the <u>COCO (Common Objects in Context)</u>, a database of images with 80 labelled classes.
- Popular pretrained YOLO models with COCO:
 - <u>ImageAl</u> (easy-to-use, lightweight YOLO implementation)
 - <u>Darknet</u> (trained by the author of YOLO)



COCO Pretrained Labels

Applications built with COCO trained models will only be able to identify these objects!

person	fire hydrant	elephant	skis	wine glass	broccoli	diningtable	toaster
bicycle	stop sign	bear	snowboard	cup	carrot	toilet	sink
car	parking meter	zebra	sports ball	fork	hot dog	tvmonitor	refrigerator
motorbike	bench	giraffe	kite	knife	pizza	laptop	book
aeroplane	bird	backpack	baseball bat	spoon	donut	mouse	clock
bus	cat	umbrella	baseball glove	bowl	cake	remote	vase
train	dog	handbag	skateboard	banana	chair	keyboard	scissors
truck	horse	tie	surfboard	apple	sofa	cell phone	teddy bear
boat	sheep	suitcase	tennis racket	sandwich	pottedplant	microwave	hair drier
traffic light	cow	frisbee	bottle	orange	bed	oven	toothbrush

Custom Models

- If your use case only uses objects in COCO → you can use a pretrained model.
- Otherwise you will need to train your own YOLO model. This will require:
- 1. Finding images of the objects to recognize.
- 2. Label bounding boxes.
- 3. Train your YOLO model. There are 2 options:
 - a. Implement your own model using OpenCV, Tensorflow/Keras
 - b. Use <u>ImageAl</u>'s custom training methods.

References/Further Reading

YOLO

 ://towardsdatascience.com/you-only-look-once-yolo-implementing-yolo-in-less-than-30-lines-o f-python-code-97fb9835bfd2

R-CNN

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms
 -36d53571365e

CNN

https://www.coursera.org/lecture/convolutional-neural-networks/optional-region-proposals-aCY
 <u>Zv</u>

YOLO

- https://hackernoon.com/understanding-yolo-f5a74bbc7967
- https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-detection-yolo-framewor -python/

Intersection Over Union

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

