DATA

 \mathbf{x}

Data as a Signal and Correlation Data, Signals, and Systems

Berkeley SCET

 $\left(\circ \right)$

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Converting From Time Sequence Data to Features

 \approx

Of course, not all data has a time property, but lets start with this type. For example(key1, value 1),(key 2, value 2)... in this case, the keys are indexed by time.

Berkeley SCET

[@

Converting From Time Sequence Data to Features

Many Types of data are signals in time

- Stock market
- Temperature
- Instrument readings

Continuous signals x(t)

Berkeley SCET

Sometimes we sample them, record at intervals of T

f(t)

Sampled signals (data) x(nT)

We get a list in a table, array, or vector

What we want (for now): features and characteristics

Observed 60.323 61.122 60.171 61.187 63 221 63.639 64 989 63.761 66.019 10 67.857 11 68.169 12 66 513 13 68.655 14 69.564 15 69331 16 70.551

For example:

- Means
- Variances
- Patten matches
- Changes
- accumulation
- Frequency

Discrete data $x_n = x1, x2, x3, \dots$

(might lose time reference)

What is the Correlation of the table?

A B C D

	Ozone	Temperature	Relative humidity	
Date	$(\mu g/m^3)$	(°C)	(%)	n deaths
1 Jan 2002	4.59	-0.2	75.7	199
2 Jan 2002	4.88	0.1	77.5	231
3 Jan 2002	4.71	0.9	81.3	210
4 Jan 2002	4.14	0.5	85.4	203
5 Jan 2002	2.01	4.3	93.5	224
6 Jan 2002	2.4	7.1	96.4	198
7 Jan 2002	4.08	5.2	93.5	180
8 Jan 2002	3.13	3.5	81.5	188
9 Jan 2002	2.05	3.2	88.3	168
10 Jan 2002	5.19	5.3	85.4	194
11 Jan 2002	3.59	3.0	92.6	223
12 Jan 2002	12.87	4.8	94.2	201

Berkeley SCET

Leads to question:

What does it mean for one row to be similar to another?

Is what is the Correlation (A, B)

Correlation Matrix: Or how is every column related to every other column:

AA	AB	AC	AD
BA	BB	BC	BD
CA	CB	CC	CD
DA	DB	BC	DD

Correlation and Correlation Matrices

P

Berkeley SCET

 \bigcirc

Correlation and Covariance:

A practical example

Correlation and Covariance:

A practical example

Berkeley SCET

$$\therefore |Cov(X, Y)| \le \sqrt{Var(X)Var(Y)}$$

plug this result from the Cauchy-Schwarz

$$|\rho| = \left|\frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}\right| \le \frac{\sqrt{Var(X)Var(Y)}}{\sqrt{Var(X)Var(Y)}} = 1$$

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X\sigma_Y}$$

$$-=rac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y},$$

Example:

What is the correlation of X,Y?

How Do we Find It?

X	Y
1	0.5
2	2
3	3.5

Example:

What is the correlation of X,Y?

How Do we Find It?

Example:

What is the correlation of X,Y?

How Do we Find It?

	X	Y
	1	0.5
	2	2
	3	3.5
Mean	2.00	2.00
Standard Deviation	1	1.5
Variance	1	2.25

Example: What is the correlation of X,Y?

One way to do it:

Berkeley SCET

	Example			
	Х	Y	X*Y	E[X]E[Y]
	1	0.5	0.5	4
	2	2	4	4
	3	3.5	10.5	4
mean	2.00	2.00	5.00	4.00
stdev	1	1.5		
var	1	2.25		

 $Corr (X,Y) = \underline{E[XY] - E[X]E[Y]}$ stdev(X) * stdev(Y)

- = E[XY] E[X]E[Y] / 1.5
- = 5 4 / 1.5
- = 1 / 1.5 = .67

Example: What is the correlation of X,Y

The other way to do it

Berkeley SCET

	Х	Y	X-ux	Y-uy	(X-ux)(Y-uy)
	1	0.5	-1	-1.5	1.5
	2	2	0	0	0
	3	3.5	1	1.5	1.5
mean	2.00	2.00	0.00	0.00	1.00
st.dev	1	1.5			

Cor(X,Y) = E[(X-ux)(Y-uy)] / 1.5

 $= \frac{[(1-2)(0.5-2) + (2-2)(2-2) + (3-2)(3.5-2)]/3}{1.5}$

$$= 1.5 + 0 + 1*1.5 / (3* 1.5) = 1/1.5 = .67$$

Correlation Matrix

To estimate from data:

- a) Use all samples ever collected
- b) Use window size of W samples of each to estimate a recent Corr Matrix

Correlation Matrix

To estimate from data:

- a) Use all samples ever collected
- b) Use window size of W samples of each to estimate recent Corr Matrix

Code Example: Correlations of

```
Correlations of
Rows with Numpy
```

Berkeley SCET

Import numpy as np

ignore line formatting
x = np.array(
 [[0.1, .32, .2, 0.4, 0.8],
 [.23, .18, .56, .61, .12],
 [.9, .3, .6, .5, .3],
 [.34, .75, .91, .19, .21]])

np.corrcoef(x) Out[4]: array([[1. ,-0.35153114,-0.74736506,-0.48917666], [-0.35153114, 1. , 0.23810227, 0.15958285], [-0.74736506, 0.23810227, 1. ,-0.03960706], [-0.48917666, 0.15958285,-0.03960706, 1.]

- If you want the correlation of the columns, just use transpose
- np.corrcoef (np.transpose(x))
- For a window, use a slice:
- window = x[0:4,3:5] for the last
- two columns

])

- Here each row is a vector of length 5
- There are 4
 vectors
- Correlation matrix is 4 x 4

Correlation of Features from Different Sources

	mpg	disp	hp	drat	wt	qsec	
Mazda RX4	21.0	160	110	3.90	2.620	16.46	
Mazda RX4 Wag	21.0	160	110	3.90	2.875	17.02	
Datsun 710	22.8	108	93	3.85	2.320	18.61	
Hornet 4 Drive	21.4	258	110	3.08	3.215	19.44	
Hornet Sportabout	18.7	360	175	3.15	3.440	17.02	
Valiant	18.1	225	105	2.76	3.460	20.22	

pandas.DataFrame.corr

DataFrame.corr(meth	nod='pearson', min_periods=1)	[source]
Compute pairwise	e correlation of columns, excluding NA/null values	
Parameters:	 method : {'pearson', 'kendall', 'spearman'} pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a v Currently only available for pearson and spearman correlation 	alid result.
Returns:	y : DataFrame	

Pandas Table Use corr() method

dataframe.corr()

mpg disp hp drat wt qsec mpg 1.00 -0.85 -0.78 0.68 -0.87 0.42 disp -0.85 1.00 0.79 -0.71 0.89 -0.43 hp -0.78 0.79 1.00 -0.45 0.66 -0.71 drat 0.68 -0.71 -0.45 1.00 -0.71 0.09 wt -0.87 0.89 0.66 -0.71 1.00 -0.17 qsec 0.42 -0.43 -0.71 0.09 -0.17 1.00

Correlation Types: Pearson, Kendal, Spearman

pandas.DataFrame.corr								
DataFrame.corr(method='pearson', min_periods=1) Compute pairwise correlation of columns, excluding NA/null values								
Parameters:	 method : {'pearson', 'kendall', 'spearman'} pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient spearman : Spearman rank correlation 							
	min_periods : <i>int, optional</i> Minimum number of observations required per pa Currently only available for pearson and spearma							
Returns:	y : DataFrame							

Pearson: Understanding Correlation in a different way

Berkeley SCET

Data Table

Х	Y
5	7
8	10
14	7
15	12
 Use n	 dimensions

Pandas will create a correlation matrix with "columns"

```
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e
In [16]: frame.ix[::2] = np.nan
# Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098775
In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.0072898851595406371
# Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
                   b
                       c d
          а
                                                e
a 1.000000 0.013479 -0.049269 -0.042239 -0.028525
b 0.013479 1.000000 -0.020433 -0.011139 0.005654
c -0.049269 -0.020433 1.000000 0.018587 -0.054269
d -0.042239 -0.011139 0.018587 1.000000 -0.017060
e -0.028525 0.005654 -0.054269 -0.017060 1.000000
```


Kendall Correlation

N(N - 1) / 2 pairs of x,y points

The Kendall τ coefficient is defined as:

(number of concordant pairs) - (number of discordant pairs) $\tau =$ n(n-1)/2

• Concordant pairs: for (x_i, y_i) and (x_j, y_j) , where $i \neq j$,

 $x_i > x_j$ and $y_i > y_j$ or $x_i < x_j$ and $y_i < y_j$

Disconcordant pairs: when the above is not • true if $x_i > x_j$ and $y_i < y_j$

or if $x_i < x_j$ and $y_i > y_j$

Spearman Correlation

Data (x=IQ,y=TV)

IQ, X_i	Hours of TV per week, Y_i
106	7
86	0
100	27
101	50
99	28
103	29
97	20
113	12
112	6
110	17

Х	У	rgx	rgy		
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36

Order rows by X and

Index X and Y in

increasing order

$$r_s =
ho_{\mathrm{rg}_X,\mathrm{rg}_Y} = rac{\mathrm{cov}(\mathrm{rg}_X,\mathrm{rg}_Y)}{\sigma_{\mathrm{rg}_X}\sigma_{\mathrm{rg}_Y}}$$

where

- *ρ* denotes the usual Pearson correlation coefficient, but applied to the rank variables.
- cov(rg_X, rg_Y) is the covariance of the rank variables.
- σ_{rg_X} and σ_{rg_Y} are the standard deviations of the rank variables.

Spearman correlation=1 Pearson correlation=0.88 10 5 Then find 0 Pearson \succ Correlation of (rgx,rgy) -10-150.0 0.2 0.4 0.6 0.8 1.0 Х

> A Spearman correlation of 1 results when the two variables being compared are monotonically related, even if their relationship is not linear. This means that all data-points with greater x-values than that of a given data-point will have greater y-values as well. In contrast, this does not give a perfect Pearson correlation.

the rank variables. Berkeley SCET

Correlation with Time Series Data Sources

 \bigotimes

P

 \bigcirc

Correlation Matrix with multiple sources and time segments

What is np.corr(x1,x2[n:n+w])?

Approaches to the Data Sequences from Multiple Sources in Tables

Approaches to the Data Sequences in Tables

Berkeley SCET

Data Input and Storage

Preprocessing

ML for Decisions

Approaches to the Data Sequences in Tables

Data Input and Storage

Berkeley SCET

Example: pre-processed statistics can be used for in ML predictions

A High-Level Framework

END OF SECTION

P

+)

Ŷ

 \bigcirc