

Chief Scientist & Founding Director,

Sutardja Center for Entrepreneurship & Technology

IEOR Emerging Area Professor Award, UC Berkeley

Open-ended, real-world project: Typically 5 students, with available advisor network

#Setting up for Supervised learning
First clean: use mapping + buckets

X = matrix of data - e.g 1000 rows # Y = In sample responses

Typically we want to split in to training data and test data

X_train = X[0:500] Y_train = Y[0:500] X_test = X[501:1000] Y_test = Y[501:1000]

Linear Regression Illustration

#Setting Linear Regression in sklearn from sklearn import linear_model

model= linear_model.LinearRegression()
model.fit(X_train, Y_train)

Y_pred_train = model.predict(X_train)
Y_pred_test = model.predict(X_test)

Compare Y_pred_test with Y_test for error.

#Setting up for Supervised learning
First clean: use mapping + buckets

X = matrix of data - e.g 1000 rows # Y = In sample responses

Typically we want to split in to training data and test data

X_train = X[0:500] Y_train = Y[0:500] X_test = X[501:1000] Y_test = Y[501:1000]

- Common Issue: Having enough data to train and test
- Cross Validation
- K-fold (ie 3-fold, 4-fold, ..
- Example:
 - Train (1,2) -> Test with 3
 - Train (2,3) -> Test with 1
 - Train (1,3(-> Test with 2
 - Estimate model error as average of all 3

The general procedure is as follows: Common issue: Having 1. Shuffle the dataset randomly. 2. Split the dataset into k groups 3. Cor each upique group:		ſ		Section 1
 3. For each unique group: 1. Take the group as a hold out or test data set 2. Take the remaining groups as a training data set 3. Fit a model on the training set and evaluate it on the test set 4. Retain the evaluation score and discard the model 	Х		Y	Section 2
 Train (1,2) -> Test with 3 Summarize the skill of the model using the sample of model evaluation Train (1,3(-> Test with 2) Estimate model error as average of all 3 	n scores			Section 3

A Gentle Introduction to k-fold Cross-Validation by Jason Brownlee

This Section:

- Context of the Titanic notebook
- Setting up data tables for training and testing ML Models
- Linear regression example in Scikit for prediction
- Cross validation (k-fold)

Next Section: ML Algorithms for Classification

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Titanic Notebook

Passenger ListData in PandasClean DataRun Many MLwith ticket / cabinTable FormatFormat forModels to predictinformationSurvival

Passenger List

Cleaned and Formatted

: 7	# preview crain_df.1	<i>the da</i> head()	ata											Out[35]:	s	urvived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
•	Passenge	erld Surv	/ived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked		0	0	3	0	1	0	0	1	0	3
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S		1	1	1	1	2	3	1	3	0	2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	с		2	1	3	1	1	1	0	2	1	3
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S		4	0	3	0	2	1	0	1	1	(
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S		5	0	3	0	1	1	2	1	1	:
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S		6	0	1	0	3	3	0	1	1	:

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Logistic Regression Illustration

Logistic Regression Illustration

A typical support vector machine class boundary maximizes the margin separating two classes

Illustration Source:

Illustration Source:

classes

2

7

A typical support vector machine class boundary maximizes the margin separating two **Illustration Source:** https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice Ø

SVM Considerations:

- 1. Robust
- Effective in high dimension 2.
- Even when data rows < feature 3. dimensions
- 4. Overfitting is possible, regularization is often needed
- To predict for sparse data, must 5. train with sparse data

KNN Method: Find the k nearest images and have them vote on the label (i.e. take the mode)

Colour	Wate	Rock
	r	
Red	109	24
Green	112	14
Blue	105	13
Red	137	15
Green	164	11
Blue	125	1
Red	179	24
	209	20
	177	13
2	136	17
•	119	7
	107	0

KNN / K Means Illustration

KNN Method: Find the k nearest images and have them vote on the label (i.e. take the mode)

Colour	Wate	Rock
	r	
Red	109	24
Green	112	14
Blue	105	13
Red	137	15
Green	164	11
Blue	125	1
Red	179	24
	209	20
	177	13
2	136	17
•	119	7
	107	0

Example of *k*-NN classification. The test sample (green circle) should be classified either to the first class of blue squares or to the second class of red triangles. If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the outer circle). - Wikipedia

KNN / K Means Illustration

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

KNN Method: Find the k nearest images and have them vote on the label (i.e. take the mode)

Colour	Wate	Rock
	r	
Red	109	24
Green	112	14
Blue	105	13
Red	137	15
Green	164	11
Blue	125	1
Red	179	24
	209	20
	177	13
2	136	17
•	119	7
	107	0

Example of *k*-NN classification. The test sample (green circle) should be classified either to the first class of blue squares or to the second class of red triangles. If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the outer circle). - Wikipedia

KNN / K Means Illustration

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

K Means / KNN Illustration

2

Decision Tree Illustration

Decision Tree Illustration

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Random Forest – A type of bagging/ensemble approach

Advantages: One of most accurate Efficient prediction over large data

Disadvantages: Overfit and Training time

Trees Can be Extended with Bagging

	from sklearn.ensemble import RandomForestClassifier
Explain bagging and Random Forrest	<pre>random_forest = RandomForestClassifier(n_estimators=1000) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train)</pre>
	<pre># Error acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2) acc_random_forest # or compare Y_pred with Y_test</pre>

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Neural Network Illustration

Scikit-Learn Algorithm

The Data-X System View: It's more than ML, it's also systems and models

2

 \mathbf{N}

S

1

7

5

End of Section

