
Introduction to Deep Learning & Neural Networks

Created By: Arash Nourian

Cortana
Microsoft’s virtual Assistant.

Socratic
An AI-powered app to help students with math and other homework. It is now acquired by Google.

Neural Networks

Gates
AND, OR, NOT gates can be solved by the mathematical formulation of a biological neuron

McCulloch & Pitt’s Neuron Model (1943)

List of Animals by Number of Neurons

McCulloch & Pitt’s Neuron Model (1943)

X t=-0
.4

W
=
-
1

x
1

t=-1
.2

W

1
=
1x

2

Quiz:
Could you do this for XOR?

Frank Rosenblatt’s Perceptron (1957)

Schematic of Rosenblatt’s Perceptron
A learning algorithm for the neuron model

Widrow and Hoff’s ADALINE (1969)

Error

Schematic of Rosenblatt’s Perceptron
A nicely differentiable neuron model

Multilayer Perceptrons
● Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature, 323(6088), 533.

● According to BackProp, they showed a formulation on how to train and set the
basis for later research in deep learning

Like other machine learning methods that we saw earlier in class, it is a
technique to:

● Map features to labels or some dependent continuous value
● Compute the function that relates features to labels or some dependent continuous value.

What is a Neural Network?

Neural Network
Network:

● A network of neurons/nodes
connected by a set of weights.

Neural:
● Loosely inspired by the way biological

neural networks in the human brain
process

Example: Linear Regression

 Y = x1∗w1 + x2∗w2 + x3∗w3 +⋅⋅⋅⋅⋅+ xn∗wn --linear regression

Activation Functions
● We use activation functions in neurons to induce nonlinearity in the neural nets

so that it can learn complex functions

● All mapping functions are NOT linear

Perceptron Update Rule

● If we misclassify a data point xi, with label yi simple update the weights by wnew

= wold +𝜆 (di - yi) for some 𝜆 between 0 and 1, where the di is the desired 0 or 1
label.

● Simply update all weights a step higher or lower in the direction of the desired
classification.

The Multilayer Perceptron

Schematic of Rosenblatt’s Perceptron
Can represent more complex functions like XOR

Example
For sample 1:

x 6 5 3 1

w 0.3 0.2 -0.5 0

Y = sum(x * w) =1.3

For sample 2:

x 20 5 3 1

w 0.3 0.2 -0.5 0

Y = sum(x * w) = 5.5

For sample 1:

x 6 5 3 1

w 0.3 0.2 -0.5 0

Y = f(sum(x * w)) = f(1.3)= 1.3

For sample 2:

x 20 5 3 1

w 0.3 0.2 -0.5 0

Y = f(sum(x * w))= f(5.5)=0

Lets apply a threshold function on the output:

For sample 1:

x 6 5 3 1

w 0.3 0.2 -0.5 0

Y = 𝛔(sum(x * w)) = 𝛔(1.3) = 0.78

For sample 2:

x 20 5 3 1

w 0.3 0.2 -0.5 0

Y = 𝛔(sum(x * w)) = 𝛔(5.5) = 0.99

Background

Now, if we apply a logistic/sigmoid function on the output, it will squeeze all the output
between 0 and 1:

For sample 1:

x 6 5 3 1

w 0.3 0.2 -0.5 0

Y = 𝛔(sum(x * w)) = 𝛔(1.3) = 0.78

For sample 2:

x 20 5 3 1

w 0.3 0.2 -0.5 0

Y = 𝛔(sum(x * w)) = 𝛔(5.5) = 0.99

Background

Now, if we apply a logistic/sigmoid function on the output, it will squeeze all the output
between 0 and 1:

For sample 1:

x 6 5 3 1

w 0.3 0.2 -0.5 0

Y = f (𝛔(sum(x * w)))= f(𝛔(1.3)) = f (0.78) =1

For sample 2:

x 20 5 3 1

w 0.3 0.2 -0.5 0

Y = f(𝛔(sum(x * w))) = f (𝛔(5.5)) = f (0.99)=1

Now, if we apply a logistic/sigmoid function on the output, it will set the final
output as 0 or 1:

Neural Network Playground

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Activation Functions

Network and Forward Propagation

Activation
Function—Logistic
Sigmoid Function

This is the architecture of a neural network. In order to make a
prediction, we do what is called forward propagation.

Arash Nourian - DataX@ Berkeley

Example Network and Forward Propagation

http://i.imgur.com/UNlffE1.png

Activation
Function—Logistic
Sigmoid Function

First, we feed in our inputs into the input layer. In this case, we have
two features, each with a value of 1.

Arash Nourian - DataX@ Berkeley

Example Network and Forward Propagation

http://i.imgur.com/UNlffE1.png

Activation
Function—Logistic
Sigmoid Function

The relevant axon weights will then take weighted sums and send them
to the next layer. In this case, the first hidden neuron gets a value of

1*(0.712) + 1*(0.112)

Arash Nourian - DataX@ Berkeley

Example Network and Forward Propagation

http://i.imgur.com/UNlffE1.png

Activation
Function—Logistic
Sigmoid Function

But 0.82 is only the pre-activation value. We need to then apply our
activation function to 0.82, giving us f(0.82) = 0.69. This is the value for

the neuron.

Arash Nourian - DataX@ Berkeley

Example Network and Forward Propagation

http://i.imgur.com/UNlffE1.png

Activation
Function—Logistic
Sigmoid Function

The same process is applied to each neuron.
Arash Nourian - DataX@ Berkeley

Example Network and Forward Propagation

http://i.imgur.com/UNlffE1.png

Activation
Function—Logistic
Sigmoid Function

0.69*(0.116) + 0.77*(0.329) + 0.68*(0.708) = 0.81
Arash Nourian - DataX@ Berkeley

Example Network and Forward Propagation

http://i.imgur.com/UNlffE1.png

Activation
Function—Logistic
Sigmoid Function

f(0.81) = 0.69. This is the output, or prediction, or our model.
Arash Nourian - DataX@ Berkeley

Mathematical Representation

http://i.imgur.com/UNlffE1.png

We can represent this model
using matrices, for example:

X gets input values:

W gets axon weights:

One step of forward propagation looks
like:

How does the network know the strength of
connections between neurons? It learns them!

● We start with random weights
● Input a set of features
● Calculate the output
● Calculate the loss wrt to actual output value in the

data
● Find the gradient of the cost function
● Backpropagation: The gradients are pushed back into

the network and used for adjusting the weights
● The whole process is repeated again till we train a

model of acceptable performance

Ticker Ticker Ticker Ticker Ticker

How Does it work?

Recall the sigmoid function is:

Different Activation Functions

During back propagation we calculate gradients of activation functions, for s =

So when f(x) is close to 1 or 0, this means the gradient will be very close to 0, so learning may
happen slowly! This is called vanishing gradients.

A Solution: The Relu Activation Function

ReLU Activation Function Graph
Notice that the derivative for x > 0 is constant, unlike the sigmoid activation function

Regularization in Neural Nets

Dropout is an approach to regularization in neural networks which helps reducing
interdependent learning amongst the neurons.

Review

1. Neural nets want to find the function that maps features to
outputs

2. Neuron takes in weighted input(s)

3. Functions are used for transforming neuron output

Exercises

1. Draw a 2 hidden layer neural net with input of size 2 units with
the following information:
Hidden Layer-1 with 3 nodes
Hidden Layer-2 with 4 nodes
The output should be a number. How many weights are there?

2. Given an input = [3, 2]

Weight matrix W =

Calculate the output, if the activation function is sigmoid.

w1 w2

0.2 0

0.91 2.25

0.7 0.6

3

2

0.2 x 3 0 x 2

0.91 x 3 2.24 x 2

0.7 x 3 0.6 x 2

0.6

7.23

3.3

0.64

0.99

0.94

X
 Sigmoid

Solution

0.6

7.23

3.3

0.64

0.99

0.94

y = Actual(z) =

Solution

Then calculate the Mean Square Loss: sq(z-y)

Given:

Review
Pros of Neural Nets

1. It finds the best function approximation from a given set of inputs,
we do not need to define features.

2. Representational Learning
a. Used to get word vectors
b. We do not need to handcraft image features

Cons of Neural Nets
1. It needs a lot of data, heavily parametrized by weights

