Agenda

Object Detection
- Defining the object detection problem and a naive solution.

YOLO Algorithm
- YOLO algorithm steps
- Bounding boxes
- Measuring performance (UoI)
- Non-max suppression

YOLO Implementations
- Pretrained models with the COCO dataset.
- Custom trained models
Classification vs. Object Detection

Object Detection is the problem of locating and classifying objects in an image.

Classification
- Each image has one object
- Model predicts one label

Object Detection
- Each image may contain multiple objects
- Model classifies objects and identifies their location.
Naive Approach

1. Scan the image with a sliding window.

2. Feed the images into a classifier model to predict a label for that region.

- This approach is slow since it checks many windows that don’t contain anything -> Not good for real time uses.
- The Region-based Convolutional Neural Net (R-CNN) is an improved version that strategically selects regions that are likely to contain an object to run through the CNN.
YOLO Algorithm
YOLO "You Only Look Once"

- Instead of making predictions on many regions of an image, YOLO passes the entire image at once into a CNN that predicts the labels, bounding boxes, and confidence probabilities for objects in the image.
- YOLO runs much faster than region based algorithms quick because requires only a single pass through a CNN.
YOLO Steps

1. Divide the image into cells with an $S \times S$ grid.

2. Each cell predicts B bounding boxes.

3. Return bounding boxes above confidence threshold.

A cell is responsible for detecting an object if the object’s bounding box falls within the cell. (Notice that each cell has 2 blue dots.)

All other bounding boxes have a confidence probability less than the threshold (say 0.90) so they are suppressed.

In practice, we would use large values ($S = 19$ and $B = 5$) to identify more objects.
How are bounding boxes encoded?

Let's use a simple example where there are 3x3 cells ($S=3$), each cell predicts 1 bounding box ($B=1$), and objects are either dog = 1 or human = 2. For each cell, the CNN predicts a vector y:

$$
\begin{align*}
(b_x, & b_y) \\
\{ & b_w, b_h, b_x, b_y, b_w, b_h, c_1, c_2, p_c \} \\
\end{align*}
$$

- **p_c**: Probability the bounding box contains an object
- **b_x, b_y**: Coordinates of the bounding box’s center
- **b_w, b_h**: Width (height) of bounding box as a percent of the cell’s width or (height)
- **c_1, c_2**: Probability the cell contains an object that belongs to class 1 (or 2) given the cell contains an object

There's a probability for each class so if there are 80 classes we would have $c_1, ..., c_{80}$
What happens if we predict multiple bounding boxes per cell ($B > 1$)? We simply augment y.

Notice that y has $5B+C$ elements (C is the number of classes).
YOLO Overview

W × H × 3

W: Width of image in pixels
H: Height of image in pixels
3: Number of color channels in RGB

Series of convolutional and pooling layers.

S × S × (5B + C)

A tensor that specifies the bounding box locations and class probabilities.
Measuring Performance with UoI

- **Union over Intersection (UoI)** measures the overlap between two bounding boxes.
- During training, we calculate the UoI between a predicted bounding box and the ground truth (the prelabeled bounding box we aim to match).

![Diagram of UoI](https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/)

Union over Intersection = \(\frac{\text{Area of Intersection}}{\text{Area of Union}} \)

- Poor
- Good
- Excellent
When predicting more than 2 bounding boxes per cell, sometimes the same object will be detected multiple times (overlapping boxes with the same label).

Non-max suppression solves multiple counting by removing the box with the lower confidence probability when the UoI between 2 boxes with the same label is above some threshold.

Non-Max Suppression

1. Identify the box with the highest confidence.
2. Calculate the UoI between the highest confidence box and each of the other boxes.
3. Suppress boxes with UoI above a selected threshold (usually 0.3).
Implementing YOLO
Pretrained Models

- Training a YOLO model requires images labeled with bounding boxes. These datasets may take time to label, so readily available prelabeled images are often used to train models.
- A common dataset for image classification/detection/segmentation is the COCO (Common Objects in Context), a database of images with 80 labelled classes.
- Popular pretrained YOLO models with COCO:
 - ImageAI (easy-to-use, lightweight YOLO implementation)
 - Darknet (trained by the author of YOLO)

Pineapples and cantaloupes are not in COCO so they are not recognized.
<table>
<thead>
<tr>
<th>Category</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>person</td>
<td>fire hydrant, elephant, skis, wine glass</td>
</tr>
<tr>
<td>bicycle</td>
<td>stop sign, bear, snowboard, cup</td>
</tr>
<tr>
<td>car</td>
<td>parking meter, zebra, sports ball, fork</td>
</tr>
<tr>
<td>motorbike</td>
<td>bench, giraffe, kite, knife, pizza</td>
</tr>
<tr>
<td>aeroplane</td>
<td>bird, backpack, baseball bat, spoon</td>
</tr>
<tr>
<td>bus</td>
<td>cat, umbrella, baseball glove, bowl</td>
</tr>
<tr>
<td>train</td>
<td>dog, handbag, skateboard, banana, chair</td>
</tr>
<tr>
<td>truck</td>
<td>horse, tie, surfboard, apple, sofa</td>
</tr>
<tr>
<td>boat</td>
<td>sheep, suitcase, tennis racket, sandwich</td>
</tr>
<tr>
<td>traffic light</td>
<td>cow, frisbee, bottle, orange, bed</td>
</tr>
</tbody>
</table>

Applications built with COCO trained models will only be able to identify these objects!
Custom Models

- If your use case only uses objects in COCO → you can use a pretrained model.
- Otherwise you will need to train your own YOLO model. This will require:

1. Finding images of the objects to recognize.
2. Label bounding boxes.
3. Train your YOLO model. There are 2 options:
 - a. Implement your own model using OpenCV, Tensorflow/Keras
 - b. Use ImageAI’s custom training methods.
References/Further Reading

- **YOLO**
 - hackernoon.com/understanding-yolo-f5a74bbc7967

- **R-CNN**

- **CNN**

- **Intersection Over Union**