Convolutional
Neural
Networks

Convolutional neural networks are deep artificial neural networks that are
used primarily to -

classify images (e.g. name what they see),

cluster them by similarity (image search), and

perform object recognition within scenes etc.

They are algorithms that can identify faces, individuals, street signs,
tumors, platypuses and many other aspects of visual data.

1) Convolution and Non-linearity Blocks First
2) Then Fully Connected Layers leading to prediction

- bird }-> Posg
o
Feature RelLU . » sunset | pe.
* o
\V/ETe) (or other Max ° o
— kernels —p A
Image (convolved non- | Pooling ° e dog Pacy
Images) linearity . o
2} s = _Jx
Convolution * RelLU Down- vec |g \E
w/ kernels « Tanh sampling p 5 | -
4 Slg moid fully connected layers Nx binary classification
}‘ Can repeat in multiple layers ’{

ReLU = I LT |

Convolution Layer

32x32x3 image -> preserve spatial structure

32 Instead of stretching the image into one
long vector we are now going to keep
the structure of the three dimensional
input.

32

Convolution Layer

32x32x3 image

5x5x3 filter
32
(7
II Convolve the filter with the image
l.e. “slide over the image spatially,
oo computing dot products”

Filters always extend the full depth of the
input volume

Convolution Layer

5x5x3 filter
32
7
Il Convolve the filter with the image
l.e. “slide over the image spatially,
oo computing dot products”

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
2
>O “~ 1 number:

the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
2
3

3 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wliz +b

Convolution Layer

activation map

I 32x32x3 image

5x5x3 filter
(N

-

bO convolve (slide) over all
spatial locations
/32

d
Q
= O
Or
> 5
< 5 &
)
O
o|lolH|O|O
01_1_108
S N 0
|| |ed || (O
% | R =
| | O[Ol
1!0111
-’ O O O[O

1

0

1

0
Kernel

Before We Go On

Xis an image h is filter (or kernal) What is X * h?

Convolution Layer consider a second, green filter

I 32x32x3 image activation maps

5x5x3 filter
S

-

convolve (slide) over all
spatial locations

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

28

28

We stack them up and get a “New Image” of size 28 x 28 x

6

Preview: ConvNet is a sequence of Convolutional
Layers, interspersed with activation functions.

32

32

CONV,
RelLU
e.g.6
5x5x3
filters

|2

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

24

CONV,
RelLU

Using different types of filters affects the
information extracted from an image- blur, edges,

texture. , ,
Convolutional of Two Signals

flxyl*glx,y| = 2 2flni.n:l-gl.\'—n,._\'-n:|
Ny ==s0), =0

elementwise multiplication and sum

The picture represents what the Filter/Kernel was looking for

What is convolution?

I | | | T I I | I
1 -—-., SR Rt : g‘ea Undel’ f(txﬁ' T.) -
03_ T Pen— L PITOSN L f(x)

: . : . -1
11| R SRR AN R AN YIRS R A] AR at-v)

; ; : ; (f+)t)
Dbt e EEEEEETE! EEEEPRREE e T -~ =
0_2-% Gpestaanis s | s sl s s s s s s i ez
0 ! I l i I l]
2 1.5 1 0.5 I 0.5 1 1.5 2
&t

In mathematics (in particular, functional analysis) convolution is a
mathematical operation on two functions (fand g) to produce a third
function that expresses how the shape of one is modified by the other.

Source - wikipedia

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)

Different Filter Types

These filter are more typical for image processing,
but not feature extraction.

In CNNs, we are looking to extract features

Operation

identity

Edge detection

Box blur
(normalized)

Gausslan blur
(approximaton)

Filter

Feature Extraction

(1 ~%

Oviginal image Visualization of the filter on the image

DjO}jO0 |O |O |0 |30 ojojojo |0 30 |0
000 |O |S0]|50]50 o|jojojo 30/0 |0
0|00 |20]50|0 |0 * 0|joj0o |30 1|0 0 0
dbdAeaLd LB ALILIE S LML, Value of convolution at this spot
0|00 [S0|50]|0 O 0]0j0}j30|0 |O |0]
0|00 [so|50]0 |0 0jojo|30o0 |o |0 is large because the sum of products
0j0}J0 |S0|S50|0 |0 o|jojojo |0 0 |0
s e R Think of this like a “moving dot

product” of the kernel across the

Multiplication and Summation = (50* 30)+(S0* 30)+(50* 30)+(20* 30)+({50* 30) = 6600 (A large number!) —_ .
original image

Spatial Dimensions:

activation map

I 32x32x3 image

5x5x3 filter
(N

-

bO convolve (slide) over all
spatial locations
/32

Spatial Dimensions:

7x7 input (spatially)
assume 3x3 filter

Spatial Dimensions:

7

7x7 input (spatially)
assume 3x3 filter

Spatial Dimensions

7x7 input (spatially)
assume 3x3 filter

Spatial Dimensions

7x7 input (spatially)
assume 3x3 filter

Spatial Dimensions

7x7 input (spatially)
assume 3x3 filter

=> 5x95 output

Stride 2:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

Stride 2:

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Stride 2:

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Stride 3:

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Calculating output size:

- Output size:

(N - F) / stride + 1

- N €9g.N=7F=3:

stride1=>(7-3)/1+1=5

stride 2 => (7-3)2+1=3

NS N

stride 3=>(7-3)/3+1=2.33:\

In practice: Common to zero pad the border

0/0(0|0 |0

Ol O | O | O | O

In practice: Common to zero pad the border

0(o|0|0|0O e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

Ol O | O | O | O

(recall:)
(N - F)/ stride + 1

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

2
|

32

CONYV,
RelLU
e.g.6
5x5x3
filters

CONYV,
RelLU
e.g. 10
5x5x6
filters

CONV,
RelLU

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples time: / /
Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 _/ _./

Number of parameters in this layer?
each filter has 5*5*2 + 1 = 76 params (+1 for bias)
=>76*10 =760

Hyperparameters

* Hyperparameters can be tuned to change complexity and size of
extracted features

* Filter Size, Stride (step size of the filter), Zero-padding (to maintain
dimensions)

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

224x224x64
112x112x64

pool

——

~ o 112
224 downsampling -
112

224

Max Pooling

Single depth slice

max pool with 2x2 filters
and stride 2

111112 |4
S| 6 7|8
312110
112|314

>

Fully Connected Layer

*32 x 32 x 3 image => stretch 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
—> 1 [O
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1) Convolution and Non-linearity Blocks First
2) Then Fully Connected Layers leading to prediction

. =
. Feature ReLU 5 IS
VET (or other Max o o
—p kernels — A

Image (convolved non- | Pooling o S
MELES) linearity . .
Convolution * RelLU Down- vec |2 \E

w/ kernels . Tanh sampling hing sl

. SlngId fully connected layers Nx binary classification
}‘ Can repeat in multiple layers »{

ReLU = B [T |

INPUT

=) = — — CAR
& —] — TRuCK
i = | — van
— — —
] [] — BICYCLE
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING 3 FLATTEN o:l”h%g“o SOFTMAX

9

ke i b i

FEATURE LEARNING CLASSIFICATION

LeNet vs ResNet vs VGGNet vs GooglLeNet

152 layers |
A
\
\
\
\
\
\
\ -
22 layers _ 19 layers '
\ 6.7

357 I_ 5 I | 8Iayers 8Iayerﬂ l shallow

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

LeNet-5

input conv1 pool1 conv2 pool2 hiddend output

1. A pioneering 7-level convolutional network by LeCun et al in 1998
2. that classifies digits
3. 32x32 pixel grey scale input images

AlexNet

pan
Lo/
I\
[
R s et
B
-
>]‘?°'<
| §
g
o |
&

= 7 138 R o
AN, 13 [\
224 3 A B
- e\ 13 e _-_'.'.413":"' 13 dense Kense
A | ") I |
155 e — — 1000
X Max
, 2048 2048

224%tStrid Max 128 Max poaling

Lo! 4 pooling pooling

3 48

1. similar architecture as LeNet by Yann LeCun et al but was deeper, with
more filters per layer, and with stacked convolutional layers.

2. It consisted 11x11, 5X5,3x3, convolutions, max pooling, dropout, data

augmentation, ReLU activations, SGD with momentum.

Trained for 6 days simultaneously on two Nvidia Geforce GTX 580 GPUs

Reducing the top-5 error from 26% to 15.3% on ImageNet challenge.

W

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

GoogleNet / Inception(2014)

I
1 1 g daip Hglh
@Eﬂﬁmﬂﬂﬁﬁﬂﬁﬁﬂﬁﬁﬂﬂﬁﬁﬂﬂﬁ 1oy I
o Pl PRI DI Hgas-
BE B8 R ﬁﬁﬂﬂ- |

1. It achieved a top-5 error rate of 6.67%
2. It used batch normalization, image distortions and Convolution
Pooli
RMSprop vt SN

Their architecture consisted of a 22 layer deep CNN. Other
Reduced the number of parameters from 60 million (AlexNet) to 4

million.

W

Batch-Normalization??

1.0

——— sigmoid
sigmoid derivative
08
06
3
04
near Zero near Zero
derivative derivative
Y ——— -t
-10.0 -75

-5.0 2.5 00

25 50
input

10.0

Batch-Normalization??

Problem 1: Optimization / Feature learning

As a network trains, weights in early layers change and as a result, the inputs
of later layers vary wildly. Each layer must readjust its weights to the varying
distribution of every batch of inputs. This slows model training. If we could
make layer inputs more similar in distribution, the network could focus on
learning the difference between classes.

Problem 2. Vanishing Gradients

When input distribution varies, so does neuron output. This results in
neuron outputs that occasionally fluctuate into the sigmoid function’s
saturable regions. Once there, neurons can neither update their own weights
nor pass a gradient back to prior layers. How can we keep neuron outputs
from varying into saturable regions?

Batch-Normalization??

sigmoid derivative

10— sigmoid
08
06
3
04
near zero
derivative
02 J
00
10.0 75

2.5

00
input

The sweet spot.

25

50

near zero
derivative

\

10.0

Batch-Normalization??

Batch normalization

mitigates the effects of
Activation Inputs Sigmoid Activation and Gradient a varied layer inputs. By
: ‘ normalizing the output
of neurons, the
activation function will
only receive inputs
close to zero. This
ensures a
non-vanishing gradient,
solving the second
problem.

VGGNet (2014)

conv11

image >

convi 2
pool 1
conv 2 1
conv?2 2
pool 2
conv 3 1
conv3 2
conv3 3
pool 3
conv 4 1
conv4 2
convd4 3
pool 4
conv 5 1
conv5 2
conv5 3
pool 5
fc 6
fc 7
fc 8

probabilities >

RN~

o

runner-up at the ILSVRC 2014
Similar to AlexNet, only 3x3 convolutions, but lots of filters.

Trained on 4 GPUs for 2—3 weeks.
It is currently the most preferred choice in the community for extracting

features from images.
VGGNet consists of 138 million parameters, which can be a bit

challenging to handle.

ResNet(2015)

cfg=13,4,6,31

50 layers

cfg=13,4,23,8]

101 layers

cfg=I3,8,36,3]

152 layers

000L‘ 94
*

/1ood Sov

——|

870C ‘AUOD |X|
Z2LG ‘AUO0D £XE
Z2LS ‘AU0D |X|

—
EE—

81702 ‘AUOD |X|
Z2LS ‘AUOD £XE
ZLS ‘AUOD |X|

| 8voz ‘Auoo x|
“ ZLS ‘AUOD E£XE
|

|| 2/eLg auod ixy
|

720l ‘AUOD IX|
9GZ ‘AUOD £XE
9GZ ‘AUO0D |X|

cfgl3] blocks

L2218

- 4
1
—_—

2¢Ol ‘AU0D IX|
9GZ ‘AUOD £XE
9GZ ‘AUO0D |X|

A

720l ‘AUOD IX|
9GZ ‘AUOD £XE
¢/9G¢ ‘AUO0D |X|

PA RS ‘AUOD LX|
foyd ‘AUOD eXE
82l fAUOD LXL
R

—_——

ZLS ‘AU0D |X|
82l ‘AUOD g£XE
82l ‘AUOD |X|

/
“ ZLS ‘AU0D |X|
_ 8Z1 ‘AUOD £XE
|
: ¢/8¢L ‘AUOD LX|
_

- - - -

9GZ ‘AUO0D |X|
9 ‘AUOD £XE
9 ‘AUOD |X|

—

9G¢ “AUOD |X|
9 ‘AUOD £XE
#9 ‘AUOD |X|

—
9GZ ‘AUOD |X|

9 ‘AUOD £XE
9 ‘AUOD |X|

1
Z/100d xvu

_

| 2v9 ‘Auod XL

|

cfgl2] blocks

J FL2Z1§

cfgl1] blocks

872215

cfgl0] blocks

96218

| ZLLans

novel architecture with “skip connections” and features heavy batch

normalization.

1.

152 layers while still having lower complexity than VGGNet.
3. top-5 error rate of 3.57% which beats human-level performance on this

2.

dataset.

Resources

https://skymind.ai/wiki/convolutional-network
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwor

k/

http://cs231n.stanford.edu/

Berkeley CS182/282A

Deep Learning book by lan Goodfellow, Yoshua Bengio, Aaron Courville

https://skymind.ai/wiki/convolutional-network
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://cs231n.stanford.edu/

