


Convolutional neural networks are deep artificial neural networks that are 
used primarily to -

● classify images (e.g. name what they see), 
● cluster them by similarity (image search), and 
● perform object recognition within scenes etc. 
● They are algorithms that can identify faces, individuals, street signs, 

tumors, platypuses and many other aspects of visual data.





























In mathematics (in particular, functional analysis) convolution is a 
mathematical operation on two functions (f and g) to produce a third 
function that expresses how the shape of one is modified by the other. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
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1. A pioneering 7-level convolutional network by LeCun et al in 1998
2. that classifies digits
3. 32x32 pixel grey scale input images



1. similar architecture as LeNet by Yann LeCun et al but was deeper, with 
more filters per layer, and with stacked convolutional layers. 

2. It consisted 11x11, 5x5,3x3, convolutions, max pooling, dropout, data 
augmentation, ReLU activations, SGD with momentum.

3. Trained for 6 days simultaneously on two Nvidia Geforce GTX 580 GPUs
4. Reducing the top-5 error from 26% to 15.3% on ImageNet challenge.

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf


GoogleNet / Inception(2014)

1. It achieved a top-5 error rate of 6.67%
2. It used batch normalization, image distortions and

 RMSprop
3. Their architecture consisted of a 22 layer deep CNN.
4. Reduced the number of parameters from 60 million (AlexNet) to 4 

million.





Problem 1:  Optimization / Feature learning
As a network trains, weights in early layers change and as a result, the inputs 
of later layers vary wildly. Each layer must readjust its weights to the varying 
distribution of every batch of inputs. This slows model training. If we could 
make layer inputs more similar in distribution, the network could focus on 
learning the difference between classes.

Problem 2. Vanishing Gradients
When input distribution varies, so does neuron output. This results in 
neuron outputs that occasionally fluctuate into the sigmoid function’s 
saturable regions. Once there, neurons can neither update their own weights 
nor pass a gradient back to prior layers. How can we keep neuron outputs 
from varying into saturable regions?





Batch normalization 
mitigates the effects of 
a varied layer inputs. By 
normalizing the output 
of neurons, the 
activation function will 
only receive inputs 
close to zero. This 
ensures a 
non-vanishing gradient, 
solving the second 
problem.



VGGNet (2014)

1. runner-up at the ILSVRC 2014 
2. Similar to AlexNet, only 3x3 convolutions, but lots of filters. 
3. Trained on 4 GPUs for 2–3 weeks. 
4. It is currently the most preferred choice in the community for extracting 

features from images.
5. VGGNet consists of 138 million parameters, which can be a bit 

challenging to handle.



ResNet(2015)

1. novel architecture with “skip connections” and features heavy batch 
normalization. 

2. 152 layers while still having lower complexity than VGGNet. 
3. top-5 error rate of 3.57% which beats human-level performance on this 

dataset.

4.



https://skymind.ai/wiki/convolutional-network
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://cs231n.stanford.edu/

