

Convolutional neural networks are deep artificial neural networks that are
used primarily to -

● classify images (e.g. name what they see),
● cluster them by similarity (image search), and
● perform object recognition within scenes etc.
● They are algorithms that can identify faces, individuals, street signs,

tumors, platypuses and many other aspects of visual data.

In mathematics (in particular, functional analysis) convolution is a
mathematical operation on two functions (f and g) to produce a third
function that expresses how the shape of one is modified by the other.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)

•

•

•

…

1. A pioneering 7-level convolutional network by LeCun et al in 1998
2. that classifies digits
3. 32x32 pixel grey scale input images

1. similar architecture as LeNet by Yann LeCun et al but was deeper, with
more filters per layer, and with stacked convolutional layers.

2. It consisted 11x11, 5x5,3x3, convolutions, max pooling, dropout, data
augmentation, ReLU activations, SGD with momentum.

3. Trained for 6 days simultaneously on two Nvidia Geforce GTX 580 GPUs
4. Reducing the top-5 error from 26% to 15.3% on ImageNet challenge.

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

GoogleNet / Inception(2014)

1. It achieved a top-5 error rate of 6.67%
2. It used batch normalization, image distortions and

 RMSprop
3. Their architecture consisted of a 22 layer deep CNN.
4. Reduced the number of parameters from 60 million (AlexNet) to 4

million.

Problem 1: Optimization / Feature learning
As a network trains, weights in early layers change and as a result, the inputs
of later layers vary wildly. Each layer must readjust its weights to the varying
distribution of every batch of inputs. This slows model training. If we could
make layer inputs more similar in distribution, the network could focus on
learning the difference between classes.

Problem 2. Vanishing Gradients
When input distribution varies, so does neuron output. This results in
neuron outputs that occasionally fluctuate into the sigmoid function’s
saturable regions. Once there, neurons can neither update their own weights
nor pass a gradient back to prior layers. How can we keep neuron outputs
from varying into saturable regions?

Batch normalization
mitigates the effects of
a varied layer inputs. By
normalizing the output
of neurons, the
activation function will
only receive inputs
close to zero. This
ensures a
non-vanishing gradient,
solving the second
problem.

VGGNet (2014)

1. runner-up at the ILSVRC 2014
2. Similar to AlexNet, only 3x3 convolutions, but lots of filters.
3. Trained on 4 GPUs for 2–3 weeks.
4. It is currently the most preferred choice in the community for extracting

features from images.
5. VGGNet consists of 138 million parameters, which can be a bit

challenging to handle.

ResNet(2015)

1. novel architecture with “skip connections” and features heavy batch
normalization.

2. 152 layers while still having lower complexity than VGGNet.
3. top-5 error rate of 3.57% which beats human-level performance on this

dataset.

4.

https://skymind.ai/wiki/convolutional-network
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://cs231n.stanford.edu/

